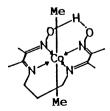
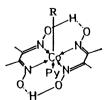
Reductive Methylation of NAD⁺ Analogues by a trans-Dimethylcobalt(III) Complex

Shunichi FUKUZUMI, * Toshiaki KITANO, Kunio ISHIKAWA, and Toshio TANAKA

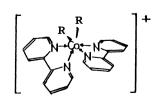
Department of Applied Chemistry, Faculty of Engineering,


Osaka University, Suita, Osaka 565

Various NAD $^+$ analogues are readily reduced by a <u>trans</u>-dimethyl-cobalt(III) complex to yield the corresponding methylated NADH analogues, while <u>cis</u>-dialkyl- or monoalkylcobalt(III) complexes cannot reduce the NAD $^+$ analogues at all.


Nicotinamide adenine dinucleotide (NAD⁺) is reduced by fuel molecules in the citric acid cycle to yield the corresponding 1,4-dihydronicotinamide (NADH), which is provided for respiratory chain. Thus, there has been considerable interest in reduction of pyridinium ions used as NAD⁺ analogues to the corresponding dihydropyridines.¹⁻³) Reduction of pyridinium ions by organometallic reagents to yield substituted dihydropyridines has also been extensively studied, since the substituted dihydropyridines are valuable synthetic intermediates for a variety of alkaloids as well as NADH analogues.⁴) With respect to the alkylating reagents, however, they have so far been limited to strong reductants, such as alkyllithium,⁴) alkyl-Grignard,^{4,5}) alkylzinc,⁶) and alkylcopper⁷) reagents.

On the other hand, the vitamin B_{12} coenzyme and related alkylcobalamins are known as unique naturally occurring organometallic reagents of great biological significance.⁸⁾ However, there has so far been no report on the reduction of NAD⁺ analogues by alkylcobalt(III) complexes which are known as rather mild reducing reagents.⁹⁾ In this study, we report that various NAD⁺ analogues can be reduced readily by a $\frac{\text{trans}}{\text{dialkylcobalt(III)}}$ complex, $\frac{\text{trans}}{\text{dialkylcobalt(III)}}$ (DpnH 11-hydroxy-2,3,9,10-tetramethyl-1,4,8,11-tetraazaundeca-1,3,8,10-tetraene-1-olate).


Alkylcobaloximes, [RCo(DH)₂py] (R = Me and Et; (DH)₂ = bis(dimethyl-glyoximato); py = pyridine), frequently used as coenzyme B_{12} analogues, 10) showed no reactivity towards 10-methylacridinium ion (AcrH⁺) which is known as a relatively strong oxidant among various NAD⁺ analogues. 11) Dialkylcobalt(III) complexes, $\underline{\text{cis}}$ -[R₂Co(bpy)₂]ClO₄ (R = Me and Et; bpy = 2,2'-bipyridine), which are stronger reductants than [RCo(DH)₂py], 12) did not react with AcrH⁺ in acetonitrile, either.

trans-[Me₂Co(DpnH)]

[RCo(DH)₂py]

cis-[R2Co(bpy)2]+

When a sterically less hindered dialkylcobalt(III) complex as compared with <u>cis</u>-dialkylcobalt(III) complexes, $\underline{\text{trans}}$ -[Me₂Co(DpnH)], ¹³⁾ is used as a reductant, however, AcrH⁺ is reduced readily by $\underline{\text{trans}}$ -[Me₂Co(DpnH)] to yield 9,10-dimethylacridine (AcrHMe) selectively (Eq. 1). The formation of [MeCo(DpnH)]⁺ was

$$\underline{\text{trans}}-[\text{Me}_2\text{Co}(\text{DpnH})] + \text{AcrH}^+ \longrightarrow [\text{MeCo}(\text{DpnH})]^+ + \text{AcrHMe}$$
 (1)

confirmed by the ¹H NMR spectrum.¹²⁾ The trans-[Me₂Co(DpnH)] complex can reduce other NAD⁺ analogues, 1-methylquinolinium ions (X-QuH⁺; X= 3-CN, 3-Br, H, and 2-Me) and 1-(X-benzyl)nicotinamidium ion (X-BNA⁺; X = 4-NO₂, 2,4-Cl₂, 4-Cl, H, and 4-MeO), to yield the corresponding methylated NADH analogues (methylated 1,2- and 1,4-dihydroquinolines and -dihydronicotinamides). The relative amounts of the isomers present in the initial product mixtures were determined from the ¹H NMR (400 MHz) spectra under the conditions that the amount of a reductant is slightly excess to that of the NAD⁺ analogue in order to avoid the possible isomerization in the presence of the unreacted NAD⁺ analogue, as reported in the literature.¹⁴⁾ The typical product distributions are shown in Table 1. For the reduction of X-QuH⁺, the 1,2-isomers predominate and no or little amount of the 1,4-isomer is formed (Table 1). In the case of BNA⁺, the 1,6-isomer predominates, but a comparable amount of the 1,4-isomer is formed together with a small amount of the 1,2-isomer.

Rates of the reduction of various NAD⁺ model compounds by $\underline{\text{trans}}$ -[Me₂Co(DpnH)] were followed by the decay of the absorption band due to $\underline{\text{trans}}$ -[Me₂Co(DpnH)] (λ_{max} 407 nm). The rates obeyed the second-order kinetics, showing the first-order dependence on the concentration of each reactant. The observed second-order rate

Table 1. Reduction of NAD⁺ Analogues (4.0 x 10^{-2} mol dm⁻³) by $\underline{\text{trans}}$ -[Me₂Co(DpnH)] (4.1 x 10^{-2} mol dm⁻³) in Acetonitrile at 298 K

NAD ⁺ analogue	Product (yield / %) ^{a)}
AcrH+	H Me AcrHMe (100) Me H Me
QuH ⁺	N H 1,2-QuHMe (100) 1,4-QuHMe (trace)
3-CNQuH ⁺	3-CN-1,2-QuHMe (78) 3-CN-1,4-QuHMe (22)
3-BrQuH ⁺	3-Br-1,2-QuHMe (91) 3-Br-1,4-QuHMe (9)
2-MeQuH ⁺	2-Me-1,2-QuMe (100) 2-Me-1,4-QuHMe (trace)
CONH ₂ BNA+ CH ₂ Ph	CONH ₂ H CONH ₂ $1,6$ -BNAMe (51) CH_2 Ph

a) Determined using a 400 MHz JEOL JNM-GSX-400 NMR spectrometer.

Chemistry Letters, 1989

Table 2. Observed Second-Order Rate Constants k_{obsd} of the Reduction of NAD⁺ Analogues by \underline{trans} -[Me₂Co(DpnH)] in Acetonitrile at 298 K, the One-Electron Reduction Potentials (E_{red}^{0} vs. SCE) of NAD⁺ Analogues, and the Calculated Rate Constants k_{e+} of Outer-Sphere Electron Transfer from \underline{trans} -[Me₂Co(DpnH)] to NAD⁺ Analogues

NAD ⁺ analogue	E ⁰ a)	k _{obsd}	k _{et} b)
	V	$dm^3 mol^{-1} s^{-1}$	$dm^3 mol^{-1} s^{-1}$
AcrH ⁺	-0.43 ^c)	4.1	6 x 10 ⁻⁶
3-CNQuH ⁺	-0.60	7.3 x 10	8×10^{-9}
3-BrQuH ⁺	-0.76	1.2 x 10	2×10^{-11}
QuH ⁺	-0.96	2.8×10^{-2}	7×10^{-15}
2-MeQuH ⁺	-1.05	3.5×10^{-4}	2×10^{-16}
4-NO ₂ BNA ⁺	-0.98	3.6×10^{-2}	3×10^{-15}
2,4-Cl ₂ BNA ⁺	-1.08 ^{c)}	1.8×10^{-2}	6×10^{-17}
4-ClBNA ⁺	-1.08 ^{c)}	6.8×10^{-3}	6×10^{-17}
BNA ⁺	-1.08 ^{c)}	2.6×10^{-3}	6×10^{-17}
4-MeOBNA ⁺	-1.13	3.8×10^{-3}	9×10^{-17}

a) Determined by the analysis of the cyclic voltammogram. 1,11) b) Calculated as the maximum value for the outer-sphere electron transfer. c) Ref. 11.

constants k_{obsd} of various NAD⁺ analogues are listed in Table 2, together with the one-electron reduction potentials E_{red}^0 , which were determined by the analysis of the cyclic voltammograms as described elsewhere. 1,11) The k_{obsd} value increases with the positive shift in the E_{red}^0 value as the electron transfer from $\underline{\text{trans-[Me}_2-Co(DpnH)]}$ to NAD⁺ analogues becomes energetically more favorable. In order to evaluate the contribution of such an electron transfer process, the rate constants k_{ef} of the electron transfer are calculated by Eq. 2, where Z is the collision

$$k_{et} = Zexp[-F(E_{ox}^{0} - E_{red}^{0})/RT]$$
 (2)

frequency, taken as 1 x 10¹¹ dm³ mol⁻¹ s⁻¹,¹⁵) F is the Faraday constant, and $E_{\rm OX}^0$ is the one-electron oxidation potential of trans-[Me₂Co(DpnH)].¹⁶) As shown in Table 2, the $k_{\rm obsd}$ values are 10^6 $^-10^{14}$ -fold larger than the $k_{\rm et}$ values which are considered as the maximum values for the outer-sphere electron transfer.¹⁵) Such large discrepancies between the $k_{\rm obsd}$ and $k_{\rm et}$ values may exclude an outer-sphere electron pathway, and thus the reduction of NAD⁺ analogues by trans-[Me₂Co(DpnH)] may proceed via a direct carbanion transfer. The carbanion (Me⁻) may attack predominantly the C-2 position of X-QuH⁺ and the C-6 position of X-BNA⁺ to yield X-1,2-QuHMe and X-1,6-BNAMe as the main products, respectively (Table 1), since essentially the same regions by NaBH₄.¹⁴)

Alternatively, an inner-sphere electron transfer may occur following the formation of an inner-sphere complex in which a strong interaction between the cobalt-carbon bond and the ${\rm NAD}^+$ analogue may exist. Upon the electron transfer, the methyl ligand is transferred to the ${\rm NAD}^+$ analogue via the facile cleavage of

the cobalt-carbon bond of $\underline{\text{trans}}\text{-}[\text{Me}_2\text{Co}^{\text{IV}}(\text{DpnH})]^+$, followed by the coupling of the methyl radical with the corresponding NAD analogue to yield the methylated NADH analogues. The dependence of k_{Obsd} on E_{red}^0 (Table 2) may be ascribed to the contribution of such an inner-sphere electron-transfer pathway. At present, however, it is difficult to distinguish between the two pathways; a direct carbanion transfer and an inner-sphere electron transfer. In any case, a strong interaction between the cobalt-carbon bond and NAD+ analogues may be essential for the reaction to occur, since no reduction of NAD+ model compounds occurs by sterically more hindered complexes, $\underline{\text{cis}}\text{-}[\text{R}_2\text{Co}(\text{bpy})_2]^+$, despite of the similar E_{ox}^0 values (0.63 and 0.57 V vs. SCE for R = Me and Et, respectively)¹²⁾ compared with that of $\underline{\text{trans}}\text{-}[\text{Me}_2\text{Co}(\text{DpnH})]$ (0.53 V vs. SCE).¹⁶⁾

References

- 1) S. Fukuzumi and T. Tanaka, "Photoinduced Electron Transfer," ed by M. A. Fox and M. Chanon, Elsevier, Amsterdam (1988), part C, Chap. 10.
- 2) R. Weinkamp and E. Steckhan, Angew. Chem., Int. Ed. Engl., 22, 497 (1983); P. Cuendet and M. Grätzel, Photochem. Photobiol., 39, 609 (1984); Y. Aoyama, K. Midorikawa, H. Toi, and H. Ogoshi, Chem. Lett., 1987, 1651.
- 3) R. Ruppert, S. Herrmann, and E. Steckhan, J. Chem. Soc., Chem. Commun., 1988, 1150.
- 4) D. M. Stout and A. I. Meyers, Chem. Rev., 82, 223 (1982).
- 5) D. L. Comins and N. B. Mantlo, J. Org. Chem., <u>50</u>, 4410 (1985); R. Yamaguchi, Y. Nakazono, T. Matsuki, E. Hata, and M. Kawanisi, Bull. Chem. Soc. Jpn., <u>60</u>, 215 (1987).
- 6) D. L. Comins and S. O'Connor, Tetrahedron Lett., <u>28</u>, 1843 (1987).
- 7) E. Piers and M. Soucy, Can. J. Chem., <u>52</u>, 3536 (1974); D. L. Comins and A. H. Abdullah, J. Org. Chem., <u>47</u>, 4315 (1982); K. Akiba, Y. Iseki, and M. Wada, Bull. Chem. Soc. Jpn., <u>57</u>, 1994 (1984).
- 8) A. W. Johnson, Chem. Soc. Rev., 9, 125 (1980); R. H. Abeles and D. Dolphin, Acc. Chem. Res., 9, 114 (1976).
- 9) M. E. Vol'pin, I. Ya. Levitin, A. L. Sigan, and A. T. Nikitaev, J. Organomet. Chem., <u>279</u>, 263 (1985); J. M. Wood, "B₁₂," ed by D. Dolphin, Wiley, New York (1982), Vol. 2, p. 151.
- 10) G. N. Schrauzer, Acc. Chem. Res., <u>1</u>, 97 (1968); J. Halpern, ibid., <u>15</u>, 238 (1982).
- 11) S. Fukuzumi, S. Koumitsu, K. Hironaka, and T. Tanaka, J. Am. Chem. Soc., <u>109</u>, 305 (1987).
- S. Fukuzumi, K. Ishikawa, and T. Tanaka, Chem. Lett., <u>1986</u>, 1801; S. Fukuzumi,
 K. Ishikawa, and T. Tanaka, J. Chem. Soc., Dalton Trans., <u>1985</u>, 899.
- 13) W. H. Tamblyn, R. J. Klingler, W. S. Hwang, and J. K. Kochi, J. Am. Chem. Soc., <u>103</u>, 3161 (1981).
- 14) R. M. G. Roberts, D. Ostović, and M. M. Kreevoy, J. Org. Chem., <u>48</u>, 2053 (1983).
- 15) R. A. Marcus, Ann. Rev. Phys. Chem., 15, 155 (1964).
- 16) R. J. Klingler and J. K. Kochi, J. Am. Chem. Soc., <u>104</u>, 4186 (1982).

(Received June 26, 1989)